BooksDirect

Description - Almgren's Big Regularity Paper, Q-valued Functions Minimizing Dirichlet's Integral And The Regularit by Vladimir Scheffer

Fred Almgren exploited the excess method for proving regularity theorems in the calculus of variations. His techniques yielded Hoelder continuous differentiability except for a small closed singular set. In the sixties and seventies Almgren refined and generalized his methods. Between 1974 and 1984 he wrote a 1,700-page proof that was his most ambitious development of his ground-breaking ideas. Originally, this monograph was available only as a three-volume work of limited circulation. The entire text is faithfully reproduced here.This book gives a complete proof of the interior regularity of an area-minimizing rectifiable current up to Hausdorff codimension 2. The argument uses the theory of Q-valued functions, which is developed in detail. For example, this work shows how first variation estimates from squash and squeeze deformations yield a monotonicity theorem for the normalized frequency of oscillation of a Q-valued function that minimizes a generalized Dirichlet integral. The principal features of the book include an extension theorem analogous to Kirszbraun's theorem and theorems on the approximation in mass of nearly flat mass-minimizing rectifiable currents by graphs and images of Lipschitz Q-valued functions.

Buy Almgren's Big Regularity Paper, Q-valued Functions Minimizing Dirichlet's Integral And The Regularit by Vladimir Scheffer from Australia's Online Independent Bookstore, BooksDirect.

A Preview for this title is currently not available.