Description - The Theory of Quantum Torus Knots: Its Foundation in Differential Geometry-Volume III by Michael Ungs
The mathematical building block presented in the four-volume set is called the theory of quantum torus knots (QTK), a theory that is anchored in the principles of differential geometry and 2D Riemannian manifolds for 3D curved surfaces. The reader is given a mathematical setting from which they will be able to witness the derivations, solutions, and interrelationships between theories and equations taken from classical and modern physics. Included are the equations of Ginzburg-Landau, Gross-Pitaevskii, Kortewig-de Vries, Landau-Lifshitz, nonlinear Schrödinger, Schrödinger-Ginzburg-Landau, Maxwell, Navier-Stokes, and Sine-Gordon. They are applied to the fields of aerodynamics, electromagnetics, hydrodynamics, quantum mechanics, and superfluidity. These will be utilized to elucidate discussions and examples involving longitudinal and transverse waves, convected waves, solitons, special relativity, torus knots, and vortices.
Buy The Theory of Quantum Torus Knots: Its Foundation in Differential Geometry-Volume III by Michael Ungs from Australia's Online Independent Bookstore, BooksDirect.
A Preview for this title is currently not available.